A unique concept to replace lumbar and cervical discs and preserve spinal motion.
The cervical prosthesis
- Heights from 5mm to 7mm
- Improved stability thanks to its anatomical design and spikes
- Easy and fast implantation
- Benefits from over 10 years of development
- 6 degrees of freedom
- Adaptive center of rotation
- No surface bearing for increased lifetime
- Improved stability
- Shock absorbing

The lumbar prosthesis
- Over 10 years of research and development
- 10 years of follow up (since 2004)
- 6° of freedom
- Primary stability thanks to spikes allowing the prosthesis to be implanted anteriorly as well as antero-laterally and to face difficult soft tissue situations
- Adaptive center of rotation
- No surface bearing for an increased lifetime
- Improved stability
- Shock absorbing
- Designed to fit and restore patient lordosis

The ESP disc prosthesis is made of 2 titanium alloy end-plates and an elastomeric cushion. The spikes on the end-plates outer surfaces improve primary fixation. The combination of a hydroxyapatite (HA) coating on top of a T40 rough surface are considered as one of the best existing coating insuring good bony fixation over time. The titanium alloy used for the end plates allows clear medical imaging.

- Between the 2 titanium end-plates the elastomeric parts are injected for controlled resistance to compression, flexion and rotation. These elastomeric parts are concentric and their fixation prohibits micro motion. The materials used for the implants have been tested for biocompatibility according to the ISO standard 10993.
- Minimally invasive anterior approach which allows reduced hospital stay and improves rehabilitation
- LP-ESP tested up to 40 million cycles
- ESP should give a significant reduction in pain severity, re-establish lumbar curvature and natural disc functions
- ESP allows quick return to normal daily activities

A MONOBLOC TOTAL THAT RESTORES

DISC PROSTHESIS
NATURAL DISC FUNCTIONS

The cervical prosthesis
- Natural Disc CP-ESP
 - Flexion/Extension 2.7°/2.7°
 - Lateral inclination 4°/4°
 - Axial rotation 2.5°/2.5°

Natural Disc LP-ESP
 - Flexion/Extension 2 to 4.7 Nm per degree 2 Nm per degree
 - Lateral inclination 2 Nm
 - Axial rotation 2 Nm
 - Axial compression 1000 to 3000 N/mm 2 Nm per degree
 - Elastic return YES YES

The cervical prosthesis
- Natural Disc CP-ESP
 - Flexion/Extension 7°/7°
 - Lateral inclination 6°/6°
 - Axial rotation 4°/4°

Natural Disc LP-ESP
 - Flexion/Extension 2.6 to 4.7 Nm per degree 2 Nm per degree
 - Lateral inclination 5°
 - Translation YES
 - Axial rotation 4 to 6 Nm per degree 2 Nm per degree
 - Axial compression 1500 to 3000 N/mm 2 Nm per degree
 - Elastic return YES YES

The cervical prosthesis
- Natural Disc CP-ESP
 - Flexion/Extension 7°/7°
 - Lateral inclination 5°/5°
 - Axial rotation 3.5°/3.5°

Natural Disc LP-ESP
 - Flexion/Extension 2.6 to 4.7 Nm per degree 2 Nm per degree
 - Lateral inclination 3.5°
 - Translation YES
 - Axial rotation 4 to 6 Nm per degree 2 Nm per degree
 - Axial compression 1500 to 3000 N/mm 2 Nm per degree
 - Elastic return YES YES
ORIGIN OF THE DEVELOPMENT:

Concept of a “Silent Block” ESP®

The development of the ESP disc range originally came from Professor Roy Camille, from La Pitié Salpêtrière Teaching Hospital in Paris (France). After inventing the pedicle screw which became the gold standard for Spine fusions, Pr. Roy Camille started to work on analysing the natural disc properties and designed a prosthesis to restore these.

LP-ESP INDICATIONS

- Lumbar discopathy that is resistant to medical treatment
- Lumbar discopathy disease after treatment of a herniated disc
- Radiculopathy by a recurrence of a disc hernia

(except for excluded hernias)

CP-ESP INDICATIONS

The CP-ESP cervical disc prosthesis is designed for specific indications detailed in the sales literature, such as:

- Symptomatic cervical discopathy, defined as (radicular) pain and/or a functional/neurological deficit in the neck the arm with at least one of the following pathologies confirmed by imaging (computerised tomography, MRI or radiography) and having resisted medical treatment for at least 6 months.
- Herniated nucleus pulposus
- Spondylitis (defined by the presence of osteophytes)
- Radicular compression
- Discal hernia
- Nerve compression

Cervical discs

<table>
<thead>
<tr>
<th>Reference</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>264363</td>
<td>Size 1 (13X15) height 5</td>
</tr>
<tr>
<td>264364</td>
<td>Size 1 (13X15) height 6</td>
</tr>
<tr>
<td>264365</td>
<td>Size 1 (13X15) height 7</td>
</tr>
<tr>
<td>264366</td>
<td>Size 2 (14X17) height 5</td>
</tr>
<tr>
<td>264367</td>
<td>Size 2 (14X17) height 6</td>
</tr>
<tr>
<td>264368</td>
<td>Size 2 (14X17) height 7</td>
</tr>
<tr>
<td>264369</td>
<td>Size 3 (15X20) height 5</td>
</tr>
<tr>
<td>264370</td>
<td>Size 3 (15X20) height 6</td>
</tr>
<tr>
<td>264371</td>
<td>Size 3 (15X20) height 7</td>
</tr>
</tbody>
</table>

Lumbar discs

<table>
<thead>
<tr>
<th>Reference</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>255682</td>
<td>Inclination 7° height 10</td>
</tr>
<tr>
<td>255683</td>
<td>Inclination 7° height 12</td>
</tr>
<tr>
<td>255687</td>
<td>Inclination 9° height 10</td>
</tr>
<tr>
<td>255688</td>
<td>Inclination 9° height 12</td>
</tr>
<tr>
<td>255690</td>
<td>Inclination 11° height 10</td>
</tr>
<tr>
<td>255691</td>
<td>Inclination 11° height 12</td>
</tr>
</tbody>
</table>

Bibliography

- 6 years clinical experience with the first bi-elastomeric lumbar disc prosthesis. Lazennec JY. EFORT meeting 2011.
- The Viscoelastic LP-ESP Lumbar Disc Prosthesis With 6 Degrees of Freedom: A Prospective Study of 120 Patients With 2 Years Minimum Follow-Up. Lazennec JY, ISTA meeting 2013.